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Abstract

Path representations are critical in a variety of
transportation applications, such as estimating path
ranking in path recommendation systems and esti-
mating path travel time in navigation systems. Ex-
isting studies often learn task-specific path repre-
sentations in a supervised manner, which require
a large amount of labeled training data and gener-
alize poorly to other tasks. We propose an unsu-
pervised learning framework Path InfoMax (PIM)
to learn generic path representations that work for
different downstream tasks. We first propose a cur-
riculum negative sampling method, for each input
path, to generate a small amount of negative paths,
by following the principles of curriculum learning.
Next, PIM employs mutual information maximiza-
tion to learn path representations from both a global
and a local view. In the global view, PIM distin-
guishes the representations of the input paths from
those of the negative paths. In the local view, PIM
distinguishes the input path representations from
the representations of the nodes that appear only
in the negative paths. This enables the learned path
representations encode both global and local infor-
mation at different scales. Extensive experiments
on two downstream tasks, ranking score estimation
and travel time estimation, using two road network
datasets suggest that PIM significantly outperforms
other unsupervised methods and is also able to be
used as a pre-training method to enhance super-
vised path representation learning.

1 Introduction
Path representations are crucial for various transportation
applications, e.g., travel cost estimation [Hu et al., 2020;
Pedersen et al., 2020a], routing [Guo et al., 2020; Pedersen
et al., 2020b], path recommendation [Yang and Yang, 2020;
Guo et al., 2018], and traffic analysis [Hu et al., 2019;
Cirstea et al., 2021]. Path representation learning (PRL) aims
to obtain distinguishable path representations for different
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paths in a transportation network and hence facilitating vari-
ous downstream applications. Existing studies on PRL often
learn path representations in a supervised manner, which has
two limitations. First, they require a large amount of labelled
training data. Second, the learned path representations are
task-specific, e.g., working well for the task with labels, but
generalize poorly to other tasks. The two limitations restrict
supervised path representation learning from broader usage,
thus calling for unsupervised path representation learning.

Although unsupervised graph representation learning
methods exist, they are not designed to capture representa-
tions of paths. Node representation learning [Tang et al.,
2015; Grover and Leskovec, 2016] learns representations for
individual nodes in a graph but does not consider paths, i.e.,
sequences of nodes. Simply aggregating the node representa-
tions of the nodes in a path fails to capture the sequential in-
formation in paths. Whole graph representation learning [Sun
et al., 2020] learns representations for different graphs, while
path representation learning considers different paths from
the same graph. In addition, unsupervised graph representa-
tion learning often utilize random negative sampling to enable
training, which is ineffective for path representation learning.

We propose an unsupervised path representation learning
framework Path InfoMax (PIM), including a curriculum neg-
ative sampling method and a path representation learning
method. First, we propose a curriculum negative sampling
strategy to generate a small number of negative paths for an
input path. Instead of randomly select other input paths as
negative paths, the strategy follows the principles of curricu-
lum learning [Bengio et al., 2009] to first generate paths that
are largely different from the input path and thus are easy
to be distinguished from the input path. Then, we gradually
generate paths that are increasingly similar to the input path
and thus are more difficult to be distinguished from the input
path. The proposed curriculum negative sampling facilitates
effective learning of distinguishable path representations.

Next, we propose two different discriminators, a path-path
discriminator and a path-node discriminator, to jointly learn
path representations. The path-path discriminator captures
the representation differences between an input path and its
negative paths, which we refer to as a global view. The path-
node discriminator captures the representation difference be-
tween an input path and the representations of the nodes that
only appear in its negative paths, which we refer to as a lo-
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cal view. The two discriminators ensure the quality of the
learned path representations, because they are distinguishable
from not only the representations of negative paths from a
global view but also the representations of the nodes in neg-
ative paths from a local view. To the best of our knowledge,
PIM is the first work that studies unsupervised path represen-
tation learning. We make the following contributions.

1. We propose a curriculum negative sampling strategy for
path representation learning.

2. We propose the path-path and path-node discriminators
to learn jointly path representations from a global and a
local view.

3. We conduct extensive experiments on two data sets with
two downstream tasks to demonstrate the effectiveness
of PIM.

2 Related Work
Path Representation Learning. Existing proposals on
path representation learning are all under the supervised
learning setting. Such proposals often require large amount
of labeled training data and the learned path representations
cannot be easily reused for other tasks. For example, Deep-
cas [Li et al., 2017], ProxEmbed [Liu et al., 2017], and
PathRank [Yang et al., 2020; Yang and Yang, 2020] employ
different kinds of RNNs to combine node representations of
the nodes in a path to obtain a path representation. Then, the
training is performed in an end-to-end fashion by using the
labeled training data. Instead, we propose an unsupervised
path representation learning framework PIM that does not re-
quire labeled training data and it generalizes nicely to multi-
ple downstream tasks (cf. Table 1 in Section 5.2). In addition,
PIM can be used as a pre-training method to enhance existing
supervised path representation learning (cf. Figure 3 in Sec-
tion 5.2). An unsupervised trajectory representation learning
method transforms trajectories into images and thus do not
apply on paths in graphs [Kieu et al., 2018].
Mutual Information Maximization on Graphs. Moti-
vated by Deep InfoMax [Hjelm et al., 2019], mutual informa-
tion maximization has been applied for unsupervised graph
representation learning. Deep Graph Infomax (DGI) [Velick-
ovic et al., 2019] and Graph Mutual Information (GMI) [Peng
et al., 2020] learn node representations and InfoGraph [Sun
et al., 2020] learns whole graph representations. Here, nega-
tive samples are often randomly drawn from a different graph
and the mutual information only considers a local view, e.g.,
a node representation vs. a graph representation. In PIM,
we propose a curriculum negative sample strategy to gener-
ate negative paths with different overlapping nodes with the
input paths from the same graph, which facilitates training.
Other advanced negative sampling approaches exist [Wang et
al., 2018; Ding et al., 2020], but they are not proposed for
graphs and do not follow curriculum learning. In addition,
we compute mutual information on both a local view (i.e., the
representations of input paths vs. the node representations of
negative paths) and a global view (i.e., the representations of
input paths vs. negative paths) and use them jointly to train
the model, which improves accuracy.

3 Preliminaries
Graph. We consider a directed graph G = (V,E), where
V is the node set and E is the edge set and we have |V| = N
and |E| = M . Each node Vi ∈ V is associated with a node
feature vector vi ∈ RD.
Path. A path P = 〈V1, V2, . . . , VZ〉 is a sequence of nodes,
where Z is the path length and P.s = V1 and P.d = VZ
are the source and destination of path P , respectively. Each
pair of adjacent nodes (Vk, Vk+1) is connected by an edge in
E, 1 ≤ k < Z. We use IV (P ) ∈ RZ×D to represent the
concatenation of the node feature vectors of the nodes in path
P . We call IV (Pi) the initial view of path Pi.
Problem Definition. Given a set of path P in graphG, Path
Representation Learning (PRL) aims at learning a path rep-
resentation vector pi ∈ RD′

for each path Pi ∈ P. Formally,
PRL learns a path encoder PEψ that takes as input the initial
view IV (Pi) of path Pi, i.e., the node features of the nodes
in path Pi, and outputs its path representation vector pi.

PEψ : RZ×D → RD
′
, (1)

where ψ indicates the learnable parameters for the path en-
coder, e.g., weights in a neural network, Z is the length of
path Pi, and D′ � Z ×D is an integer indicating the dimen-
sion of the learned path representation vector pi.

The learned path representation vectors are supposed to
support a variety of downstream tasks, e.g., path ranking and
path travel time estimation.

4 Path InfoMax
Figure 1 offers an overview of the proposed framework Path
InfoMax (PIM). PIM employs contrastive learning, specifi-
cally mutual information maximization, to train the path en-
coder to produce path representations without requiring task-
specific labels.

The path encoder takes as input the initial view of an input
path and outputs its path representation (cf. Sec. 4.1). Train-
ing the path encoder is supported by a path-path discrimina-
tor and a path-node discriminator using negative samples. To
this end, we first introduce the curriculum negative sampling
strategy to generate negative paths (cf. Sec. 4.2). Then, the
path-path discriminator guides the path encoder to produce
path representations such that the path representations of in-
put paths can be distinguished from the path representations
of negative paths (cf. Sec. 4.3). In addition, the path-node
discriminator guides the path encoder to produce path rep-
resentations such that the path representations of input paths
can be distinguished from the node features of the nodes that
only appear in the negative paths (cf. Sec. 4.4). Finally, we
discuss the final training objectives of PIM.

4.1 Path Encoder
Since a path consists of a sequence of nodes, we use a
model that is able to encode sequential data, e.g., a re-
current neural network [Hochreiter and Schmidhuber, 1997;
Cho et al., 2014] or a Transformer [Vaswani et al., 2017] as
the path encoder PEψ , where ψ represents the parameters to
be learned for the path encoder.
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Figure 1. PIM Overview. The Path Encoder takes as input the initial view IV (Pi) of input path Pi and the initial view IV (P̄j) of negative
path P̄j , and returns their representations pi and p̄j , respectively. The Path-Path Discriminator takes as input a pair of path representations and
decides whether they are from the same path. A positive pair, e.g., (pi, IV (Pi)), refers to two different representation views of the same input
path Pi. A negative pair, e.g., (pi, p̄j), refers to the path representations of an input path vs. its negative path. The Path-Node Discriminator
takes as input a (input path representation, node feature vector) pair and decides whether the node is from the input path. A positive pair, e.g.,
(pi, v2), represents the path representation of Pi and a node feature vector of node v2 that only appears in Pi. A negative pair, e.g., (pi, v5),
represents the path representation of the input path and a node feature vector of node v5 that only appears in the negative path.

Figure 2. Curriculum Negative Sampling.

Given a path Pi = 〈V1, V2, . . . , VZ〉, we use its initial view
IV (Pi) ∈ RZ×D as the input to the path encoder, which
returns its path representation vector pi ∈ RD′

.

4.2 Curriculum Negative Sampling

Motivated by curriculum learning [Bengio et al., 2009], we
propose a curriculum negative sampling method to generate
negative samples. The idea behind curriculum learning is that
we start to train a model with easier samples first, and then
gradually increase the difficulty levels. In our setting, we first
generate negative paths that are different from the input path,
e.g., paths without any overlapping nodes with the input path.
In this case, it can be easy to train a path encoder that returns
distinguishable representations of the input path and the neg-
ative paths. Then, we gradually generate negative paths that
are increasingly similar to the input path, e.g., sharing the
same source and destination with the input path and with in-
creasingly overlapping nodes. This makes more difficult for
the path encoder to generate distinguishable path represen-
tations. Figure 2 shows three negative paths P̄1, P̄2, and P̄3

with increasingly difficulties for input path P1, along with the
underlying road network graph.

Specifically, for each input path P1, we first randomly se-
lect a path from the path set P as the first negative path. Next,
we use the source and the destination of P1 as the input to
call the top-k diversified shortest path algorithm [Liu et al.,
2018] to generate paths that share the same source and desti-
nation of P1. This algorithm allows us to set different diver-
sity thresholds, enabling us to generate negative paths with
different overlapping nodes with the input path.

4.3 Global Mutual Information Maximization
We proceed to the learning of the path encoder using the neg-
ative paths. We first consider a global view of the path rep-
resentations. We expect that the learned path representations
are distinguishable from the path representations of the nega-
tive paths.

To this end, we first construct negative and positive pairs
for training a path-path discriminator DPP

ω1
. In a negative

pair 〈(pi, p̄j),−〉, pi and p̄j represent the path representations
of input path Pi and a negative path P̄j , respectively, which
are both returned by the path encoder PEψ . In a positive pair
〈(pi, IV (Pi),+〉, pi is still the path representations of input
path Pi returned by the path encoder and IV (Pi) is the initial
view of path Pi (cf. Section 4.1). Here, pi and IV (Pi) rep-
resent two different views, i.e., a view from the path encoder
vs. a view from the node features, of the same input path Pi.
Figure 1 shows examples of a negative and a positive pair.

Next, we use mutual information maximization to train the
path-path discriminatorDPP

ω1
such that it is able to make a bi-

nary classification on the negative vs. positive pairs. Specifi-
cally, we aim at maximizing the estimated mutual information
(MI) over the positive and negative pairs.

arg max
ψ,ω1

∑
Pi∈P

Iψ,ω1
(pi,NPi),

where Iψ,ω1(·, ·) is the MI estimator modeled by the path-
path discriminator DPP

ω1
that is parameterized by parameters

ω1 and the path encoder PEψ that is parameterized by pa-
rameters ψ. Path Pi is an input path from P and pi is its path
representation returned by the path encoder. NPi includes
the negative paths of Pi. Following [Velickovic et al., 2019;
Hjelm et al., 2019], we use a noise-contrastive type objective
with a standard binary cross-entropy loss on the positive pairs
and the negative pairs, as shown in Equation 2.

Iψ,ω1 (pi,NPi) :=
1

1 + |NPi|
(EP

[
logDPP

ω1
(pi, IV (Pi))

]
+∑

P̄j∈NPi

ENPi

[
log
(

1−DPP
ω1

(pi, p̄j)
)]

)

(2)
Here, we use EP and ENPi

to denote expectations w.r.t. the
empirical probability distribution of the input paths and the
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negative paths. Note that pi and p̄j are the path representa-
tions returned by the path encoder PEψ . Thus, maximizing
the MI estimator enables the training of both the path encoder
(i.e., parameters ψ) and the path-path discriminator (i.e., pa-
rameters ω1).

4.4 Local Mutual Information Maximization
We proceed to consider a local view of the path represen-
tations. We expect that the learned path representations are
distinguishable from the node feature vectors of the nodes
from input vs. negative paths. This is particularly impor-
tant when distinguishing two paths with significant overlap-
ping nodes. We introduce a positive node set Xi that includes
nodes appearing only in the input path Pi but not the negative
paths and a negative node set Yi that includes nodes appear-
ing only in the negative paths but not the input path Pi. We
then construct negative and positive pairs for training a path-
node discriminator DPN

ω2
. In a negative pair 〈(pi, vj),−〉, pi

represents the path representations of input path Pi, returned
by the path encoder PEψ; vj represents the node feature vec-
tor of a negative node Vj ∈ Yi. Similarly, in a positive pair
〈(pi, vk),+〉, vk represents the node feature vector of a posi-
tive node Vk ∈ Xi. Figure 1 shows examples of two negative
and two positive such pairs for the path-node discriminator.

Similar to the path-path discriminator training, we also em-
ploy mutual information maximization to train the path-node
discriminator DPN

ω2
. In particular, we have

arg max
ψ,ω2

∑
Pi∈P

Iψ,ω2(pi,Xi ∪ Yi),

where Iψ,ω2 is the MI estimator modeled by the path-node
discriminator DPN

ω2
that is parameterized by parameters ω2

and the path encoder PEψ that is parameterized by parame-
ters ψ. We use a noise-contrastive with a BCE loss, similar to
Equation 2, to compute Iψ,ω2(pi,X ∪ Y) as follows.

Iψ,ω2(pi,Xi ∪ Yi) :=
1

|Xi ∪ Yi|
(
∑
vk∈Xi

EXi

[
logDPNω2

(pi, vk)
]

+

∑
vj∈Yi

EYi

[
log
(

1−DPN
ω2

(pi, vj)
)]

)

(3)

4.5 Maximization of PIM
We combine both the global and local mutual information
maximization when training the final PIM model, see below.

arg max
ψ,ω1,ω2

∑
Pi∈P

(Iψ,ω1
(pi,NPi) + Iψ,ω2

(pi,Xi ∪ Yi)) .

5 Experiments
We conduct experiments to investigate the effectiveness of the
proposed unsupervised path representation learning frame-
work PIM on two downstream tasks using two data sets. In
addition, we also demonstrate that PIM is able to use as a
pre-training method to enhance supervised path representa-
tion learning.

5.1 Experimental Setup
Road Network and Paths
We obtain two road network graphs from OpenStreetMap.
The first is from Aalborg, Denmark, consisting of 8,893
nodes and 10,045 edges. The second is from Harbin, China,
consisting of 5,796 nodes and 8,498 edges. We also obtain
two substantial GPS trajectory data sets on the two road net-
works. We consider 52,494 paths in the Aalborg network and
37,079 paths in the Harbin network.

Downstream Tasks
Path Travel Time Estimation. Each path is associated
with its travel time (seconds) obtained from trajectories. We
aim at building a regression model to estimate the travel time
of paths. We evaluate the accuracy of the estimations by
Mean Absolute Error (MAE), Mean Absolute Relative Error
(MARE) and Mean Absolute Percentage Error (MAPE).
Path Ranking. Given a set of paths, which often share the
same source and destination, each path is associated with a
ranking score in range [0, 1]. The ranking scores are ob-
tained with the help of trajectories by following an existing
study [Yang et al., 2020]. In path ranking, we aim at building
a regression model to estimate the ranking scores of the paths.
To evaluate the accuracy of the estimated ranking scores, we
not only report the MAE of the estimated ranking scores but
also use Kendall rank correlation coefficient (denoted by τ )
and Spearman’s rank correlation coefficient (denoted by ρ)
to measure the consistency between the ranking derived by
the estimated ranking scores vs. the ranking derived by the
ground truth ranking scores. Smaller MAE and higher τ and
ρ values indicate higher accuracy.

Baselines
We compare PIM with seven baseline methods.

• Node2vec [Grover and Leskovec, 2016], Deep Graph
InfoMax (DGI) [Velickovic et al., 2019], Graphical
Mutual Information Maximization (GMI) [Peng et al.,
2020] are three unsupervised node representation learn-
ing models, which output the node representation for
each node in a graph. We use the average of the node
representations of the nodes in a path to get the path rep-
resentation of the path. We also consider using concate-
nation instead of average, but resulting worse accuracy.

• Memory Bank (MB) [Wu et al., 2018] is an unsuper-
vised learning approach to obtain representations from
high-dimensional data. It uses a memory bank to achieve
the negative samples from current batch to train an en-
coder, then gets the representation based on contrastive
loss. We re-implement MB with an LSTM encoder to
better capture the sequential information to get the path
representations.

• InfoGraph [Sun et al., 2020] is an unsupervised whole
graph representation learning model. Here, we treat a
path as a graph to learn the path representation.

• BERT [Devlin et al., 2019] is an unsupervised language
representation learning model. To enable training, we
(1) treat a path as a sentence and mask some nodes
in the path; and (2) split a path P into two sub-paths
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Method
Aalborg Harbin
Travel Time Estimation Path Ranking Travel Time Estimation Path Ranking
MAE MARE MAPE MAE τ ρ MAE MARE MAPE MAE τ ρ

Node2vec 121.43 0.27 31.04 0.18 0.66 0.70 258.91 0.22 23.17 0.15 0.70 0.72
DGI 192.63 0.42 82.44 0.54 0.49 0.52 528.71 0.39 86.53 0.21 0.59 0.60
GMI 136.58 0.30 50.81 0.23 0.58 0.61 979.68 0.73 192.45 0.24 0.55 0.56
MB 243.97 0.53 84.17 0.35 0.34 0.38 533.41 0.40 86.01 0.27 0.31 0.34
BERT 254.17 0.54 61.61 0.36 0.38 0.39 514.95 0.57 49.80 0.28 0.45 0.46
InfoGraph 132.28 0.29 39.47 0.17 0.69 0.73 391.45 0.44 44.60 0.29 0.68 0.72
PIM 76.10 0.16 17.28 0.12 0.72 0.76 125.76 0.14 13.73 0.11 0.75 0.79

Table 1. Overall Accuracy on Travel Time Estimation and Ranking Score Estimation.

P1 and P2, and consider (P1, P2) as a valid Q&A pair
and (P2, P1) as an invalid Q&A pair because the former
keeps a meaningful order while the latter does not.

• PathRank [Yang et al., 2020] is a supervised path rep-
resentation learning model based on GRU. PathRank
takes into account the labels from a specific downstream
task to obtain path representations.

Among these baselines, Node2vec, DGI, GMI, MB, Info-
Graph, and BERT are unsupervised learning approaches,
which do not employ labels from specific downstream tasks
to produce path representations. In contrast, PathRank is a
supervised learning approach, where it employ labels from
specific downstream tasks to produce path representations,
meaning that the obtained path representations are different
when using labels from different downstream tasks.

Regression Model
For all unsupervised learning approaches, we first obtain a
task-independent path representation and then apply a regres-
sion model to solve different downstream tasks using task-
specific labels. In the experiments, we choose Gaussian Pro-
cess Regressor (GPR) to make travel time and ranking score
estimation. We randomly choose 85%, 10%, and 5% of the
paths as the training, validation, and test sets.

Implementation Details
We use an LSTM as the path encoder. We use
node2vec [Grover and Leskovec, 2016], an unsupervised
node representation learning method, to obtain a 128 dimen-
sional node feature vector for each node, i.e., D = 128.
We set the path representation size D′ = 128. In the cur-
riculum negative sampling, for each input path, we gener-
ate four negative paths—the first two paths are randomly
selected from P and the third and the fourth paths are two
paths returned by the top-k diversified shortest paths with
different overlapping nodes with the input path. We use
Adam [Kingma and Ba, 2015] for optimization with learn-
ing rate of 0.001. All algorithms are implemented in Py-
torch 1.7.1. We conduct experiments on Ubuntu 18.04.5 LTS,
with 40 Intel(R) Xeon(R) Gold 5215 CPUs @ 2.50GHz and
four Quadro RTX 8000 GPU cards. Code is available at
https://github.com/Sean-Bin-Yang/Path-InfoMax.git.

5.2 Experimental Results
Overall accuracy on both downstream tasks
Table 1 shows the results on travel time and ranking score es-
timation. PIM consistently outperforms all baselines on both

tasks and on both data sets. Node2vec, DGI, and GMI fail
to capture the dependencies among node feature vectors in
paths. In contrast, PIM considers such dependencies by using
the LSTM based path encoder. In addition, the two discrimi-
nators further improve the accuracy.

InfoGraph implicitly considers node feature vector se-
quences. However, the discriminator in InfoGraph only con-
siders the local view. In addition, InfoGraph considers other
paths in the same batch as negative samples, whereas PIM
employs curriculum negative sampling to generate negative
samples. PIM outperforms InfoGraph suggests that the pro-
posed curriculum negative sampling and jointly consider both
local and global views are effective.

Although MB and BERT also capture dependencies among
the node feature vectors in paths, such methods only achieve
relatively poor accuracy. This is because MB often requires
large amount of negative samples (e.g., more than 256),
which is not feasible in our setting. Although the unsuper-
vised training strategy in BERT works well for NLP, it does
not fit our problem setting on learning path representations.

Using PIM as a Pre-training Method
In this experiment, we consider PIM as a pre-training method
for the supervised method PathRank. PathRank employs an
GRU that takes as input node feature vectors in a path and
predicts travel time or ranking scores. To use PIM as a pre-
training method for PathRank, we use a GRU based path en-
coder. Then, we first train PIM in an unsupervsied manner,
and then use the learned parameters in the GRU path encoder
to initialize the GRU in PathRank. Finally, we use the labelled
training paths to fine tune PathRank.

Figure 3 shows the travel time estimation performance of
PathRank with vs. without pre-training on both data sets.
When not using pre-training, we train PathRank using 10K
labelled training paths. We observe that: (1) when using
pre-training, we are able to achieve the same accuracy of the
non-pre-training PathRank using less labelled training paths,
e.g., ca. 7K for Aalborg and 6K for Harbin. (2) when us-
ing 10K labelled training paths, the pre-training PathRank
achieves higher accuracy than the non-pre-training PathRank.
We observe similar results on the other task of path ranking,
suggesting that PIM can be used as a pre-training method to
enhance supervised methods.

5.3 Ablation Studies
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(a) Travel Time Estimation (b) Path Ranking

Figure 3. Effects of Pre-training.

Travel Time Estimation Path Ranking
MAE MARE MAPE MAE τ ρ

Global 237.92 0.51 85.88 0.34 0.22 0.25
Local 118.03 0.25 26.20 0.14 0.70 0.74
Joint 76.10 0.16 17.28 0.12 0.72 0.76

Table 2. Effects of Local and Global MI Maximization, Aalborg.

Impact of Local and Global MI Maximization
We investigate the impact of jointly using both path-path and
path-node discriminators to consider both the local and global
MI maximization. We consider two variants of PIM where
(1) we only use the path-path discriminator to maximize the
global MI and (2) we only use the path-node discriminator to
maximize the local MI. Table 4 shows that jointly maximiz-
ing both the local and global MI achieves the best accuracy,
which justifies our design choices of using both the path-path
and path-node discriminators.

Impact of Curriculum Negative Sample Strategy
To investigate the effectiveness of the proposed curriculum
negative sample strategy, we compare it with the following
two strategies.

1. Random only: it randomly selects paths from P.
2. Top-k only: it employs the top-k diversified shortest path

algorithms to generate negative paths sharing the same
origin and destination with the input path with different
overlapping nodes.

To make a fair comparison, we use each strategy to generate
the same number of negative paths, i.e., 4. Table 3 shows that
the top-k only strategy is better than random only, suggesting
that it is important to distinguish the representations of input
paths vs. paths sharing the same origin and destination. The
proposed curriculum negative sampling strategy achieves the
best accuracy, suggesting that training PIM from easy to hard
negative paths help further improves accuracy.

Impact of Negative Path Numbers
We investigate the impact of using different numbers of neg-
ative paths. We vary the number of negative paths K from 1,
2, 3, to 4. Recall that when using curriculum negative sam-
pling, the first two paths are from P and the last two paths
are from the top-k diversified shortest path finding algorithm.
Table 4 suggests that when using more negative paths, the ac-
curacy improves. The accuracy improvements from 2 to 3 is

Travel Time Estimation Path Ranking
MAE MARE MAPE MAE τ ρ

Rand. 101.16 0.22 23.51 0.14 0.65 0.69
Top-k 100.87 0.22 22.31 0.13 0.72 0.75
Curr. 76.10 0.16 17.28 0.12 0.72 0.76

Table 3. Effects of Curriculum Negative Sample Strategy, Aalborg.

Travel Time Estimation Path Ranking
MAE MARE MAPE MAE τ ρ

K=1 119.77 0.29 32.91 0.19 0.58 0.63
K=2 107.46 0.26 29.22 0.18 0.59 0.63
K=3 87.58 0.19 20.00 0.12 0.71 0.74
K=4 76.10 0.16 17.28 0.12 0.72 0.76

Table 4. Effects of Negative Path Numbers, Aalborg.

Posi.
Nods.

Travel Time Estimation Path Ranking
MAE MARE MAPE MAE τ ρ

20% 114.31 0.25 24.92 0.20 0.65 0.70
40% 111.33 0.24 24.08 0.16 0.66 0.70
60% 104.57 0.23 22.94 0.14 0.68 0.71
80% 101.31 0.23 22.56 0.13 0.68 0.72
100% 76.10 0.16 17.28 0.12 0.72 0.76

Neg.
Nods.

Travel Time Estimation Path Ranking
MAE MARE MAPE MAE τ ρ

20% 130.90 0.29 28.21 0.19 0.60 0.65
40% 110.86 0.24 25.30 0.15 0.67 0.70
60% 105.70 0.23 24.01 0.13 0.67 0.71
80% 102.80 0.22 23.35 0.13 0.68 0.72
100% 76.10 0.16 17.28 0.12 0.72 0.76

Table 5. Effects of Positive / Negative Nodes, Aalborg.

the largest, suggesting that the top-k algorithm is very effec-
tive on generating high quality negative paths.

Impact of Positive/Negative Nodes in local MI
To study the impact of positive and negative nodes, we con-
sider cases where we only use 20%, 40%, 60%, 80% of pos-
itive or negative nodes. Table 5 shows that the accuracy in-
creases when using more less positive and negative nodes.

6 Conclusions
We study unsupervised path representation learning without
using task-specific labels. We propose a novel contrastive
learning framework Path InfoMax (PIM), including a curricu-
lum negative sampling strategy to generate a small number of
negative paths and a training mechanism that jointly learns
distinguishable path representations from both a global and a
local view. Finally, we conduct experiments on two datasets
with two downstream tasks. Experimental results show that
PIM outperforms other unsupervised methods and, as a pre-
training method, PIM is able to enhance supervised path rep-
resentation learning.
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Ronan Collobert, and Jason Weston. Curriculum learning.
In ICML, pages 41–48, 2009.

[Cho et al., 2014] Kyunghyun Cho, Bart van Merrienboer,
Dzmitry Bahdanau, and Yoshua Bengio. On the proper-
ties of neural machine translation: Encoder-decoder ap-
proaches. In EMNLP, pages 103–111, 2014.

[Cirstea et al., 2021] Razvan-Gabriel Cirstea, Tung Kieu,
Chenjuan Guo, Bin Yang, and Sinno Jialin Pan. En-
hancenet: Plugin neural networks for enhancing correlated
time series forecasting. In ICDE, pages 1739–1750, 2021.

[Devlin et al., 2019] Jacob Devlin, Ming-Wei Chang, Ken-
ton Lee, and Kristina Toutanova. BERT: pre-training of
deep bidirectional transformers for language understand-
ing. In NAACL-HLT, pages 4171–4186, 2019.

[Ding et al., 2020] Jingtao Ding, Yuhan Quan, Quanming
Yao, Yong Li, and Depeng Jin. Simplify and robustify
negative sampling for implicit collaborative filtering. In
NeurIPS, 2020.

[Grover and Leskovec, 2016] Aditya Grover and Jure
Leskovec. node2vec: Scalable feature learning for
networks. In KDD, pages 855–864, 2016.

[Guo et al., 2018] Chenjuan Guo, Bin Yang, Jilin Hu, and
Christian S. Jensen. Learning to route with sparse trajec-
tory sets. In ICDE, pages 1073–1084, 2018.

[Guo et al., 2020] Chenjuan Guo, Bin Yang, Jilin Hu, Chris-
tian S. Jensen, and Lu Chen. Context-aware, preference-
based vehicle routing. VLDB J., 29(5):1149–1170, 2020.

[Hjelm et al., 2019] R. Devon Hjelm, Alex Fedorov, Samuel
Lavoie-Marchildon, Karan Grewal, Philip Bachman,
Adam Trischler, and Yoshua Bengio. Learning deep rep-
resentations by mutual information estimation and maxi-
mization. In ICLR, 2019.

[Hochreiter and Schmidhuber, 1997] Sepp Hochreiter and
Jürgen Schmidhuber. Long short-term memory. Neural
Computation, 9(8):1735–1780, 1997.

[Hu et al., 2019] Jilin Hu, Chenjuan Guo, Bin Yang, and
Christian S. Jensen. Stochastic weight completion for road
networks using graph convolutional networks. In ICDE,
pages 1274–1285, 2019.

[Hu et al., 2020] Jilin Hu, Bin Yang, Chenjuan Guo, Chris-
tian S. Jensen, and Hui Xiong. Stochastic origin-
destination matrix forecasting using dual-stage graph con-
volutional, recurrent neural networks. In ICDE, pages
1417–1428, 2020.

[Kieu et al., 2018] Tung Kieu, Bin Yang, Chenjuan Guo, and
Christian S. Jensen. Distinguishing trajectories from dif-
ferent drivers using incompletely labeled trajectories. In
CIKM, pages 863–872, 2018.

[Kingma and Ba, 2015] Diederik P. Kingma and Jimmy Ba.
Adam: A method for stochastic optimization. In ICLR,
2015.

[Li et al., 2017] Cheng Li, Jiaqi Ma, Xiaoxiao Guo, and
Qiaozhu Mei. Deepcas: An end-to-end predictor of in-
formation cascades. In WWW, pages 577–586, 2017.

[Liu et al., 2017] Zemin Liu, Vincent W. Zheng, Zhou Zhao,
Fanwei Zhu, Kevin Chen-Chuan Chang, Minghui Wu, and
Jing Ying. Semantic proximity search on heterogeneous
graph by proximity embedding. In AAAI, pages 154–160,
2017.

[Liu et al., 2018] Huiping Liu, Cheqing Jin, Bin Yang, and
Aoying Zhou. Finding top-k shortest paths with diversity.
IEEE Trans. Knowl. Data Eng., 30(3):488–502, 2018.

[Pedersen et al., 2020a] Simon Aagaard Pedersen, Bin Yang,
and Christian S. Jensen. Anytime stochastic routing with
hybrid learning. PVLDB, 13(9):1555–1567, 2020.

[Pedersen et al., 2020b] Simon Aagaard Pedersen, Bin
Yang, and Christian S. Jensen. Fast stochastic routing
under time-varying uncertainty. VLDB J., 29(4):819–839,
2020.

[Peng et al., 2020] Zhen Peng, Wenbing Huang, Minnan
Luo, Qinghua Zheng, Yu Rong, Tingyang Xu, and Jun-
zhou Huang. Graph representation learning via graphical
mutual information maximization. In WWW, pages 259–
270, 2020.

[Sun et al., 2020] Fan-Yun Sun, Jordan Hoffmann, Vikas
Verma, and Jian Tang. Infograph: Unsupervised and semi-
supervised graph-level representation learning via mutual
information maximization. In ICLR, 2020.

[Tang et al., 2015] Jian Tang, Meng Qu, Mingzhe Wang,
Ming Zhang, Jun Yan, and Qiaozhu Mei. LINE: large-
scale information network embedding. In WWW, pages
1067–1077, 2015.

[Vaswani et al., 2017] Ashish Vaswani, Noam Shazeer, Niki
Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you
need. In NIPS, pages 5998–6008, 2017.

[Velickovic et al., 2019] Petar Velickovic, William Fedus,
William L. Hamilton, Pietro Liò, Yoshua Bengio, and
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